Protein-induced changes in DNA structure and dynamics observed with noncovalent site-directed spin labeling and PELDOR
نویسندگان
چکیده
Site-directed spin labeling and pulsed electron-electron double resonance (PELDOR or DEER) have previously been applied successfully to study the structure and dynamics of nucleic acids. Spin labeling nucleic acids at specific sites requires the covalent attachment of spin labels, which involves rather complicated and laborious chemical synthesis. Here, we use a noncovalent label strategy that bypasses the covalent labeling chemistry and show that the binding specificity and efficiency are large enough to enable PELDOR or DEER measurements in DNA duplexes and a DNA duplex bound to the Lac repressor protein. In addition, the rigidity of the label not only allows resolution of the structure and dynamics of oligonucleotides but also the determination of label orientation and protein-induced conformational changes. The results prove that this labeling strategy in combination with PELDOR has a great potential for studying both structure and dynamics of oligonucleotides and their complexes with various ligands.
منابع مشابه
Noncovalent and site-directed spin labeling of duplex RNA.
An isoindoline-nitroxide derivative of guanine (Ǵ, "G-spin") was shown to bind specifically and effectively to abasic sites in duplex RNAs. Distance measurements on a Ǵ-labeled duplex RNA with PELDOR (DEER) showed a strong orientation dependence. Thus, Ǵ is a readily synthesized, orientation-selective spin label for "mix and measure" PELDOR experiments.
متن کاملA PELDOR-based nanometer distance ruler for oligonucleotides.
A pulsed electron paramagnetic resonance (EPR) spectroscopic ruler for oligonucleotides was developed using a series of duplex DNAs. The spin-labeling is accomplished during solid-phase synthesis of the oligonucleotides utilizing a palladium-catalyzed cross-coupling reaction between 5-iodo-2'-deoxyuridine and the rigid spin-label 2,2,5,5-tetramethyl-pyrrolin-1-yloxyl-3-acetylene (TPA). 4-Pulse ...
متن کاملStructural changes of an abasic site in duplex DNA affect noncovalent binding of the spin label ç
The influence of structural changes of an abasic site in duplex DNA on noncovalent and site-directed spin labeling (NC-SDSL) of the spin label ç were examined with electron paramagnetic resonance (EPR) spectroscopy. The binding affinities of ç to sixteen different DNA duplexes containing all possible sequences immediately flanking the abasic site were determined and the results showed that the ...
متن کاملDetection of Ligand‐induced Conformational Changes in the Activation Loop of Aurora‐A Kinase by PELDOR Spectroscopy
The structure of protein kinases has been extensively studied by protein crystallography. Conformational movement of the kinase activation loop is thought to be crucial for regulation of activity; however, in many cases the position of the activation loop in solution is unknown. Protein kinases are an important class of therapeutic target and kinase inhibitors are classified by their effect on ...
متن کاملLong distance PELDOR measurements on the histone core particle.
The nucleosome core particle is the fundamental unit of chromatin structure and at its heart is the histone core octamer composed of histones H4, H3, H2A and H2B. To understand the structure dynamics and function of chromatin it is important to be able to probe the structures of its component parts in a variety of ways. Site directed spin-labeling technology has enabled the insertion of nitroxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 41 شماره
صفحات -
تاریخ انتشار 2013